Sidney的IWOM监测与分析:理解和实践
所谓IWOM,可能大家还有点儿陌生,是英语“Internet Word of Mouth”的简称,Word of Mouth的意思是“口碑”,因此IWOM监测听起来搞得挺玄乎,实际上就是为客户研究互联网上的口碑。
虽说说起来很简单,但如何监测这个IWOM,如何为客户提出好的建议,却是一件相当复杂的工作。互联网上的口碑载体本就很多,但更麻烦的是口碑这东西永远没有标准,而且随着老百姓语言和网友们情绪的发展不断变化着——这不是加入一个Tracking Code(监测代码)就能搞定的事情,这需要一个完整的方法论。
我知道目前最好的IWOM研究公司是CIC(SeeISee),在与他们的高级总监交流及自己做项目的实践过程中,我逐渐形成了一些自己的理解,并放入为客户服务的实践中,现在跟朋友们进行分享,内容还远不成熟,大家自备避雷针。
IWOM的3A层次
在实践中,IWOM被分为三个层次,与客户的需求紧密相连。三个层次分别是:Alert(报警),Analytics(分析)和Architecture(构建)。
- Alert层次指帮助客户及时发现负面口碑。不要小看了那些该死的“Gossip”,负面口碑往往会演变成危机。“三株口服液”和“秦池古酒”的案例大家已经耳熟能详了,甚至写入了吴晓波的“大败局教科书”,而互联网上的反面案例则来自于DELL(HELL)以及“家乐福”。所以,你要永远相信“天有不测风云”,即使你不能防患于未然,也不能完全消除负面口碑,早点儿发现它们并且早做准备也是好的。
- Analytics是比Alert更高一级的层次。Alert是以发现负面口碑为中心,而Analytics则是全面分析口碑内容及趋势。前者如同雷达,后者则是卫星全局扫描(糟糕,有人丢砖——你以为你是嫦娥一号?!)。简单说来,Analytics要实现的目标是:
- 1. 分析互联网上关于品牌/产品/企业有哪些主要的口碑;
- 2. 口碑的趋势;
- 3. 更重要的,是发现这些口碑发生的原因。第3点可是一个称职的分析师应该做的哦!:)
- Architecture则是最高层次。所谓构建,就是能够消除口碑对抗,营造口碑氛围,甚至控制口碑走势。哇,偶地个妈呀,这已经不是人工降雨了,这简直是控制天气!没错,这……的确是高科技啊,要做的就是要让舆论不知不觉走向有利于客户的方向,甚至是走向客户预先定位的方向。尝试用专业的语言来说则是:
- 1. 消弭负面情绪
- 2. 扩大正面声音
- 3. 引导(甚至左右)舆论内容
这3个层次都不简单,尤其是第2和第3个。口碑这东西,今天平安无事,明天就满城风雨,如何实现上面的三个目标层次呢?
相信28分布,别信长尾
大家都知道网络有非常明显的长尾特征,但是口碑这东西,却有明显的聚合性。因此我说,在进行IWOM研究的时候,一定要相信二八分布,千万不要试图把长尾都一网打尽,原因很简单——你做不到。
我在这方面吃过亏,因为客户永远都希望什么都要,但他们其实很多时候并不清楚什么是他们最应该要的。不知道大家是否有同感——客户拿到了所有,但忽视了精华,他们拥有,但他们不消化。这常常让我回忆起《夺宝奇兵——圣杯》的最后场景。在监测IWOM的时候,我发现,在绝大多数情况(我这么说你要相信是100%的情况)下,20%(甚至是10%不到)的口碑聚合地已经聚集了80%(其实我更相信是90%)的口碑了。
大家用双手就能数清楚各个行业的互联网口碑聚集地。
博客常常是负面声音的发起者(虽然绝大多数情况不是由它放大的),但请你还是相信我坚持的二八分布规律,20%的blogger已经覆盖了80%的声音——鬼才相信有那么多的有价值的原创呢!
不过,请不要误解我,长尾在很多地方是有效的,只是在这里,我们先忽略它吧!
搞定IWOM的所有数据?
在分析网站的时候,我们使用Tracking Code,或者可以通过Log file来直接获得数据。但是IWOM则不能如此。有几个难处。
- 没有Tracking Code可加,也没有Log file能分析。原因很简单,就不罗嗦了。
- 即使技术上能加,面对浩如烟海的BBS,Blog以及层出不穷的Web2.0网站,技术人员也会加的吐血。
- 加了Code又有什么用呢?你要分析的是内容,而不仅仅是点击量。
所以,不需要用网站分析的方法来分析IWOM了,我们需要其他的帮助。这个帮助是网页抓取技术,或者更精确的说,是BBS(或者Blog)的页面内容抓取技术。
这个技术并不复杂,但是想要做好却是相当困难。我没有发现哪个服务提供商能真正做好的,原因在于BBS(或者Blog)系统的多样化,虽然Discuz系统(或是Wordpress系统)已经占据相当份额,但是还是有数以千记的各种系统以及自行开发的系统存在着。所以我可以肯定的告诉大家,中国没有哪一家技术提供商能够做到抓取哪怕50%的BBS(Blog)内容(请注意,我所说的内容是包括首贴和回复的)。这一点上,我很笃定,但我希望我是错的,我希望我的读者告诉我,在这一点上我错了,有一家公司能做到!
现在大多数都只能抓取部分BBS或者BBS的部分数据。一种是能够搜索到相当多的BBS,但是很可惜只能抓取主贴,但是抓不到回复(大旗网就是如此),另外一种则是能够抓取论坛上的所有主贴和回复,但是要为每个BBS做专门的抓取定制开发,所以抓取的BBS数量是有限度的(印象中CIC是这样,但我希望我是错的,请CIC的朋友指正)。因此,这就是为什么我前面说,千万不要相信长尾的原因。能够把20%一网打尽我看已经是救民于水火了。
在我的实践中,我们需要抓取的数据包括:
- 定性数据
- 主贴的内容
- 回复的内容
- 标题
- 作者
- 发帖时间/回帖时间
- 所在BBS及板块的名称,以及它们的URL
- 以及其他数据(如是否置顶,是否加精等等)
- 定量数据
- 发帖数
- 每个帖子的回复数
- 每个帖子的阅读数(点击数)
这些数据构成了IWOM分析的基础。其中,定量数据容易获得,而定性数据则很难完全抓取(比如第7个,现在技术上面临的困难还很大),这正是IWOM分析在全球都仍然是需要攻克的难题的第一个原因,但相比第二个难题,这个简直就是小儿科。
初步分析——你知道汉语有多么可怕吗?
为什么说是初步分析呢?原因在于这一部分的分析是最基础的,本来应该由机器完成,但是现在却需要大量的人力来完成。机器程序编的越好,人力需要参与的就越少,但想要让人在旁边睡大觉是不可能的。
相信你已经猜到初步分析的内容了:
- 机器参与的:
- 排水/扫水(就别让水帖占用我们的空间了)
- 关键词抽取和统计(初步的主题分析)
- 调性分析(所谓调性,就是这个帖子是正面的还是负面的还是中性的还是扯淡的)
- 人参与的:
- 主题分析(也就是说,这个帖子最主要是关于什么的,其他谈到了哪些方面)
- 调性分析(帖子整个主题表现出的调性,以及谈到的各个方面的调性)
这其中,最关键的是调性分析和主题分析。调性分析能够帮我们实现本文最初所讲的第一个层次:Alert,而且更重要的是帮助我们进行进一步的分析;而主题分析则是为了深入挖掘口碑的内涵。
本来,我们是希望机器能把这些事情都做了,很可惜,中文是世界上第一复杂的语言,不仅词汇繁多,俚语已经不少,还非要成天两头的蹦出来一些网络语言,酱紫搞得机器很不知所措,处理的结果常常“雷倒众生”。其实不是我们的技术不行,微软和Google现在也做不好自然语言的分析,仅仅一个“分词”技术就够申请数个专利的了。所以,没辙,还是要靠大脑。
不过,就算是靠大脑,还是会有误差,因为人的背景不同,比如分析讨论电脑的帖子,没有一点儿DIY的背景很容易分析错误。不仅如此,有时候帖子的标题似乎是“负面的”,但仔细一看帖子,很可能是“正面的”,这个时候,粗心一点儿就会出错。但是人不可靠的最关键原因是,人是会疲劳的,尤其是面对这种枯燥的工作。而且,如果我问你,你愿意每天60元坐在电脑面前兼职做这个工作吗?你的答案一定是——No,并且给我一记闷棍。
所以,汉语口碑的调性分析对于机器而言,还是一座不可逾越的大山,必须要人来完成,但人力资源是可贵的,而且服务的质量也难以保证。这是IWOM监测如此困难和痛苦的原因,也是需要攻克的最难的难题。
初步分析的数据具有极为重要的意义,它是后面所有分析的基础,但是质量让我十分伤心。我们需要一个高质量的服务,如果谁知道,请告诉我。
深入分析和提出建议——分析师的工作来了
前三步实际上等于网站分析中利用WA工具获得的初步数据报告,可是已经让人精疲力尽了。终于轮到分析师上场了,他们需要做的事情实际上就是解答IWOM的第二个层次——Analytics。其实,也是我在这个客户项目中最主要负责的部分。
我主要从下面的各个方面入手:
- Negative(负面) vs. Postive(正面)
- Negative分析:Negative舆论是什么,为什么,以及产品/品牌/企业的短板
- Positive分析,Positive舆论是什么,产品/品牌/企业的长项
- 分类主题分析,以细分产品/品牌/企业的不同特征,这个必须基于初步分析中的“主题分析”
- 竞争对手分析(内容跟上面4个一样)
- 产品/品牌口碑对比分析
- 趋势分析
- 总结分析的发现,并且提出建议
- 最恐怖的是——上面的所有分析应该基于不同细分用户群体。
纷繁无杂,千头万绪,我希望我再不用做这个东西。不过最终当报告形成,看到拿出来的一些结果和建议,还是有点儿成就感。但是,我对初步分析的基础数据一直不满意,因此我竭尽所能,仍不能确保这是一个100%可信的报告,我也相信在中国可能还没有这样的一个报告。
控制天气——仍然非常困难
现在报告形成了,我们知道了口碑背后的原因,我们开始形成一些行动,比如,用官方的正确舆论引导,或者强烈抗议竞争对手的恶意破坏(这种行为实际上就是反面软文)。但是我不打算在这个领域写太多,我相信有很多专家,但是我相信这是一个很难解决的问题。我还在实践,我还没有结论。我希望大家的建议。
最后,把整个流程做一个图形化的总结,见下图。