三个枪手的博弈

14年前

 

彼此痛恨的甲、乙、丙三个枪手准备决斗。甲枪法最好,十发八中;乙枪法次之,十发六中;丙枪法最差,十发四中。

先提第一个问题:如果三人同时开枪,并且每人只发一枪;第一轮枪战后,谁活下来的机会大一些?

一般人认为甲的枪法好,活下来的可能性大一些。但合乎推理的结论是,枪法最糟糕的丙活下来的几率最大。

 

我们来分析一下各个枪手的策略。

枪手甲一定要对枪手乙先开枪。因为乙对甲的威胁要比丙对甲的威胁更大,甲应该首先干掉乙,这是甲的最佳策略。

同样的道理,枪手乙的最佳策略是第一枪瞄准甲。乙一旦将甲干掉,乙和丙进行对决,乙胜算的概率自然大很多。

枪手丙的最佳策略也是先对甲开枪。乙的枪法毕竟比甲差一些,丙先把甲干掉再与乙进行对决,丙的存活概率还是要高一些。

 

我们计算一下三个枪手在上述情况下的存活几率:

甲:24%(被乙丙合射40X60=24%)

乙:20%(被甲射100-80=20%)

丙:100%(无人射丙)

 

通过概率分析,我们发现枪法最差的丙存活的几率最大,枪法好于丙的甲和乙的存活几率远低于丙的存活几率。

 

但是,上面的例子隐含一个假定,那就是甲乙丙三人都清楚地了解对手打枪的命中率。但现实生活中,因为信息不对称,比如枪手甲伪装自己,让枪手乙和丙认为甲的枪法最差,在这种情况下,最终的幸存者一定是甲。所以,无论是历史,还是现实,那些城府很深的奸雄往往能成为最后的胜利者。这样的例子,对你的职场生涯或者官场生涯是否很有启发呢?

 

我们继续假定,甲乙丙三人互相不了解对手的枪法水平。在这种情况下,甲被乙射、甲被丙射、甲被乙丙射及甲不被乙丙射的机率各为25%,按贝氏(Bayes)定理计算甲的存活率: 

甲活率:31%([被乙射:25X40=10]+[被丙射:25X60=15]+[被乙丙射:25X40X60=6])。

乙活率:23%([被甲射:25X20=5]+[被丙射:25X60=15]+[被甲丙射:25X20X60=3])。

丙活率:17%([被甲射:25X20=5]+[被乙射:25X40=10]+[被甲乙射:25X20X40=2])。

 

在枪手互相不知道对手命中率的信息的情况下,这时命中率最高的枪手甲存活的几率最大,枪法最差的丙存活的可能性最小。

 

我们现在回到甲乙丙都知道对手命中率的情形,进行第二轮枪战的分析。

 

在第一轮枪战后,丙有可能面对甲,也可能面对乙,甚至同时面对甲与乙,除非第一轮中甲乙皆死。尽管第一轮结束后,丙极有可能获胜(即甲乙双亡),但是第二轮开始,丙就一定处于劣势,因为不论甲或乙,他们的命中率都比丙的命中率为高。

这就是枪手丙的悲哀。能力不行的丙玩些花样虽然能在第一轮枪战中暂时获胜。但是,如果甲乙在第一轮枪战中没有双亡的话,在第二轮枪战结束后,丙的存活的几率就一定比甲或乙为低。

第二轮枪战中甲乙丙存活的几率粗算如下:

(1)假设甲丙对决:甲的存活率为60%,丙的存活率为20%。

(2)假设乙丙对决:乙的存活率为60%,丙的存活率为40%。

 

这似乎说明,能力差的人在竞争中耍弄手腕能赢一时,但最终往往不能成事。我们现在用严格的概率方法计算一下两轮枪战后,甲乙丙各自的存活的几率。

(1)第一轮:

甲射乙,乙射甲,丙射甲。

甲的活率为24%(40X60%),乙的活率为20(100-80),丙的活率为100%(无人射丙)。

(2)第二轮:

情况1:甲活乙死(24X80=19.2%)

甲射丙,丙射甲──甲的活率为60%,丙的活率为20%。

情况2:乙活甲死(20X76=15.2%)

乙射丙,丙射乙──乙的活率为60%,丙的活率为40%。

情况3:甲乙皆活(24X20=4.8%)

重复第一轮。

情况4:甲乙皆死(76X80=60.8%)

枪战结束。

甲的活率为12.672

(19.2X60)+(4.8X24)=12.672

乙的活率为10.08

(15.2X60)+(4.8X20)=10.08

丙的活率为75.52

(19.2X20)+(15.2X40)+(4.8X100)+(60.8X100)=75.52

 

通过对两轮枪战的详细概率计算,我们仍然发现枪法最差的丙存活的几率最大,枪法较好的甲和乙的存活几率仍远低于丙的存活几率。

对于这样的例子,有人会发出“英雄创造历史,庸人繁衍子孙”的感叹。

 

我们现在改变游戏规则,假定甲乙丙不是同时开枪,而是他们轮流开一枪。在这个例子中,我们发现丙的机会好于他的实力,丙不会被第一枪干掉,并且他可能极有机会在下一轮中先开枪。

 

先假定开枪的顺序是甲、乙、丙,甲一枪将乙干掉后(80%的几率),就轮到丙开枪,丙有40%的几率一枪将甲干掉。即使乙躲过甲的第一枪,轮到乙开枪,乙还是会瞄准枪法最好的甲开枪,即使乙这一枪干掉了甲,下一轮仍然是轮到丙开枪。无论是甲或者乙先开枪,乙都有在下一轮先开枪的优势。

 

如果是丙先开枪,情况又如何呢?

 

丙可以向甲先开枪,即使丙打不中甲,甲的最佳策略仍然是向乙开枪。但是,如果丙打中了甲,下一轮可就是乙开枪打丙了。因此,丙的最佳策略是胡乱开一枪,只要丙不打中甲或者乙,在下一轮射击中他就处于有利的形势。

 

我们通过这个例子,可以理解人们在博弈中能否获胜,不单纯取决于他们的实力,更重要的是取决于博弈方实力对比所形成的关系。

在上面的例子中,乙和丙实际上是一种联盟关系,先把甲干掉,他们的生存几率都上升了。我们现在来判断一下,乙和丙之中,谁更有可能背叛,谁更可能忠诚?

 

任何一个联盟的成员都会时刻权衡利弊,一旦背叛的好处大于忠诚的好处,联盟就会破裂。在乙和丙的联盟中,乙是最忠诚的。这不是因为乙本身具有更加忠诚的品质,而是利益关系使然。只要甲不死,乙的枪口就一定会瞄准甲。但丙就不是这样了,丙不瞄准甲而胡乱开一枪显然违背了联盟关系,丙这样做的结果,将使乙处于更危险的境地。

合作才能对抗强敌。只有乙丙合作,才能把甲先干掉。如果,乙丙不和,乙或丙单独对甲都不占优,必然被甲先后解决。

 

先看赤壁之战的例子。

那时,曹操势力最强,孙权次之,刘备最弱。为了抵抗强大的曹操,孙刘两家只有联合起来,取胜的几率才比较大。孙权就相当于前面例子中的乙,是孙刘联盟中最卖力的成员。在赤壁之战中,孙权出力最多,刘备实际上没出多少力。《三国演义》夸大了诸葛亮对赤壁之战的贡献,当时孙刘联军的统帅实际上是周瑜,周瑜在赤壁之战的功劳远大于诸葛亮。

 

再看蒙古联合南宋灭金的例子。

当时,蒙古军事实力最强,金国次之,南宋武力最弱。本来南宋应该和金国结盟,帮助金国抵御蒙古的入侵才是上策,或者至少保持中立。但是,当时的南宋采取了和蒙古结盟的政策。南宋当局先是糊涂地同意了拖雷借道宋地伐金。1231年,蒙古军队在宋朝的先遣队伍引导下,借道四川等地,北度汉水歼灭了金军有生力量。1233年,南宋军队与蒙古军队合围蔡州,金朝最后一个皇帝在城破后死于乱兵,金至此灭亡。1279年,南宋正式亡于蒙古。

 

如果南宋当政者有战略眼光,捐弃前嫌,与世仇金结盟对抗最强大的敌人蒙古,宋和金都不至于那么快就先后灭亡了。

竞争中,没有永远的敌人。为了自己的利益,要随时准备同自己以前的对手进行合作以对付更危险的敌人。

争一时也争春秋,近视贪利不如宏观天下。

 

转自:http://bbs.asiaci.com/thread-137331-1-1.html