本文是百度文章《基于深度学习的图像识别进展:百度的若干实践》的摘要,其中个人观点仅供参考。 1 深度学习三大优势 在百度的实践中,我们认识到深度学习主要在以下三个方面具有巨大优势:
过去几周,我们一直在采用深度学习算法为未来几周即将推出的一个新VentureRadar功能而努力。这激起了我寻找更多开发和应用深度学习的创业公司的兴趣,所以我决定在VentureRadar的数据库中选
Caffe( http://caffe.berkeleyvision.org/ )是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清( http://daggerfs.com/
csdn.net/songrotek/article/details/50572935 1 学习资料 增强学习课程 David Silver (有视频和ppt): http://www0.cs.ucl
Theano-Lights是一个基于Theano的深度学习研究框架,提供了Several recent Deep learning 模型实现和一个便利的训练和测试功能。The models are not
导读:这是《神经网络和深度学习简史》第一部分。这一部分,我们会介绍1958年感知器神经网络的诞生,70年代人工智能寒冬以及1986年BP算法让神经网络再度流行起来。 序言:深度学习掀起海啸 如今,深度学习浪潮拍打
深度学习大讲堂是高质量原创内容的平台,邀请学术界、工业界一线专家撰稿,致力于推送人工智能与深度学习最新技术、产品和活动信息! 摘要 商品检索是一门综合了物体检测、 图像分类以及特征学习的技术。 近期,
做一些相关的工作(希望有小伙伴一起交流)。 一、相关文章 关于DRL,这方面的工作基本应该是随着深度学习的爆红最近才兴起的,做这方面的研究的一般都是人工智能领域的大牛。最早(待定)的一篇可以追溯到2010年,Lange
本文内容由机器之心编译自谷歌开发者博客的 Codelabs 项目。据介绍,Google Developers Codelabs 提供了有引导的、教程式的和上手式的编程体验。大多数 Codelabs 项
代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了? 现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础
Google 开源了新一代深度学习引擎 TensorFlow 。本文解释了一些 TF 里面我觉得可以从系统方面值得看的地方。 编程模型 TF 目前的编程模型是符号编程 (symbolic computation)
作者简介 秦涛博士,现任微软亚洲研究院主管研究员。他和他的小组的研究领域是机器学习和人工智能,研究重点是深度学习和强化学习的算法设计、理论分析及在实际问题中的应用。他在国际顶级会议和期刊上发表学术论文80余篇
模型学习的目标是通过提供输入和观察输出来构建软件和硬件系统的黑箱状态图模型(black box state diagram model)。模型学习的算法的设计师一个基本的研究问题。 模型学习正在成
机器视觉。当然这只是一种比较直白的理解,并不能见得绝对准确或者全面。我们权且这样处理。而且在本文后面若提到这两个名词,我们所表示的意思是一致的。 但无论是机器学习,还是数据挖掘,你一定听说过很多很
第12章 归纳和分析学习的结合 纯粹的归纳学习方法通过在训练样例中寻找经验化的规律来形成一般假设。纯粹的分析方法使用先验知识演绎推导一般假设。本章考虑将归纳和分析的机制结合起来的方法,以获得两者的
第13章 增强学习 增强学习要解决的是这样的问题:一个能够感知环境的自治agent,怎样学习选择能达到其目标的最优动作。这个很具有普遍性的问题应用于学习控制移动机器人、在工厂中学习进行最优操作工序、
计算学习理论 本章理论地刻画了若干类型的机器学习问题中的困难,和若干类型的机器学习算法的能力。该理论致力于回答如下的问题:“在什么样的条件下成功的学习是可能的?”以及“在什么条件下一特定的学习算法可
笔者自大学以来一直断断续续的学过机器学习啊、自然语言处理啊等等方面的内容,相信基本上每个本科生或者研究生都会接触过这方面,毕竟是一个如此大的Flag。不过同样的,在机器学习,或者更大的一个概念,数据科学
Deep Models for Text and Sequence Rare Event 与其他机器学习不同,在文本分析里,陌生的东西(rare event)往往是最重要的,而最常见的东西往往是最不重要的。
计算3000次,可以发现准确率一开始提高得很快,后面提高速度变缓,最终测试准确率提高到88.8% 深度神经网络实践 代码见 nn_overfit.py 优化 Regularization 在前面实现的