随着基于人工智能与机器学习的应用如雨后春笋般不断涌现,我们也看到有很多提供类似功能的 API 悄悄登上了舞台。 API 是用于构建软件应用的程序、协议以及工具的组合;本文是对 2015 中这个列表 的修正与完善,移除了部分被废弃的
OpenNLP 是一个机器学习工具包,用于处理自然语言文本。支持大多数常用的 NLP 任务,例如:标识化、句子切分、部分词性标注、名称抽取、组块、解析等。 Apache OpenNLP 1
作者:daniel-D 1. 前言 熟悉机器学习的童鞋都知道,优化方法是其中一个非常重要的话题,最常见的情形就是利用目标函数的导数通过多次迭代来求解无约束最优化问题。实现简 单,coding 方便
大当家的,快醒醒!!斯坦福的《机器学习》课程已经开始上课了! 课程在 Coursera 开设,老师提醒,虽然课程今天才开始,但是 3 月 27 日你就要提交第一次作业了! 鸭梨山大有木有?
Software Foundation (ASF) 开发的一个全新的开源项目,其主要目标是创建一些可伸缩的机器学习算法,供开发人员在 Apache 在许可下免费使用。该项目已经发展到了它的最二个年头,目前只有一个公共发行版。Mahout
摘要现在机器学习逐渐成为行业热门,经过二十几年的发展,机器学习得到了十分广泛的应用,如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、DNA序列测序、战略游戏和机器人等方面。
他们,我们的能力需要有一个巨大的提升,这可能意味着我们需要更广泛地使用机器学习技术。 这可能会惊到行业外的旁观者,但机器学习目前并没有广泛地影响到IT安全领域。安全专家认为,尽管信用卡欺诈侦查系统和网络设备制造商正在使用先
人注目的问题的独特见解。最近推出的系列围绕如今最热门的技术之一——机器学习所展开,之前机器之心推出了Andrew Ng系列,而本次机器之心精选华盛顿大学教授、热门畅销书《主算法》(The Master
本列表总结了25个Java机器学习工具&库: 1. Weka 集成了数据挖掘工作的机器学习算法。这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调用。Weka包括一系列的工具,如数据预处理、分类、回归、聚类、关联规则以及可视化。
从毕业加入Google开始做分布式机器学习,到后来转战腾讯广告业务,至今已经七年了。我想说说我见到的故事和我自己的实践经历。这段经历给我的感觉是:虽然在验证一个新的并行算法的正确性的时候,我们可以利用现有框架,尽量快速实现,但是
声yn=fn(xn)+noise。如果用高阶多项式去拟合数据的话(比如有五个数据 点,用四次多项式去拟合的话,如果让该多项式曲线均通过这几个数据点的话,则只有唯一解),这种情况可能使得训练误差Ein很小,但是实际的真实误差就可
Framework是一个Java开发的开源机器学习框架。 用于快速开发机器学习和统计应用。该框架的主要重点是包括了大量的机器学习算法和统计检验,并能够处理中小规模的数据集。 详细介绍: http://blog
文字化了@老师木谈机器学习的一系列文章,其中有一篇我很感兴趣的文章《机器学习有没有用?》,文字版连接:http://php-52cs.rhcloud.com/?p=87 作为一个机器学习爱好者,也想谈
基本概念 机器学习 机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让计 算机可以自动“学习”的算法。机器学习算
经典的机器学习方面源代码库整理。全面收集,可用于数据挖掘,计算机视觉,模式识别,信息检索相关领域。 机器学习开源软件网 2 :收录了各种机器学习的各种编程语言学术与商业的开源软件 Dmoz机器学习网址目录
Milk是Python的一个机器学习工具箱,其重点是提供监督分类法与几种有效的分类分析:SVMs(基于libsvm),K-NN,随机森林经济和决策树。它还可以进行特征选择。这些分类可以在许多方面相结合
一、基本原理 存在一个样本数据集合(也称训练样本集),并且样本集中每个数据都存在标签。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。
原文出处: Liu_LongPo的专栏(@Liu_LongPo) K-means算法属于无监督学习聚类算法,其计算步骤还是挺简单的,思想也挺容易理解,而且还可以在思想中体会到EM算法的思想。 K-means
com/cn/news/2015/12/the-20-key-tips-in-ml-to-know 数据科学家对优化算法和模型以进一步发掘数据价值的追求永无止境。在这个过程中他们不仅需要总结前人的经验教训,还需要有自己的理
Fuzzy 机器学习框架是一个程序库和一个使用直觉模糊数据的机器学习的GUI前端。该方法是基于直觉模糊集和可能性理论。进一步的特点是模糊的功能和类;基于语言 变量的数值,枚举的功能和特点;用户自定义特