机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里 IT 经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。
Machine learning is a subfield of computer science evolved from the study of pattern recognition and computational learning theory in artificial intelligence. With it, users can explore the construction and study of algorithms.
本文中,阿姆斯特丹大学教授Max Welling介绍了机器学习与统计学关系的历史和未来。本文来自第6届IMS-ISBA(数理统计研究会和国际贝叶斯协会)圆桌讨论。 作者:Max Welling 在
Instead 一文中我指出,在大数据时代,我鼓励人们从一个问题开始学习而不是从一个工具开始。这个道理同样适用于AI/机器学习领域。在我们如今生活的年代,让人兴奋的是我们可以提出真正无所畏惧的问题。因为我们已经不再受到硬件或软件的限制。
net/article/2015-12-25/2826560 本列表总结了25个Java机器学习工具&库: 1. Weka 集成了数据挖掘工作的机器学习算法。这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调
Recode 中文站 11 月 10 日报道 机器学习作为人工智能的一种类型,可以让软件根据大量的数据来对未来的情况进行阐述或预判。如今,机器学习在硅谷非常流行,并吸引了多家知名企 业竞相涉猎该领域。例如,Facebook
a Machine Learning Classifier 你知道如何为你的分类问题选择合适的机器学习算法吗?当然,如果你真正关心准确率,那么最佳方法是测试各种不同的算法(同时还要确保对每个算法 测
分布式基础学习 分布式基础学习【一】 所谓分布式,在这里,很狭义的指代以Goo
http://www.cnblogs.com/fantasy01/p/4595902.html 在看机器学习实战时候,到第三章的对决策树画图的时候,有一段递归函数怎么都看不懂,因为以后想选这个方向为自己的职业导向,抱着精看的态度,对
1. Paracel的是什么? Paracel是豆瓣开发的一个分布式计算框架,它基于参数服务器范式,最初是为机器学习算法设计的。 Paracel支持数据和模型的并行,为用户提供简单易用的通信接口,
院于日前 将分布式机器学习工具包( DMTK )通过 GitHub ( https://github.com/Microsoft/DMTK ) 开源。 DMTK 由一个服务于分布式机器学习的框架和一组
算算时间,从开始到现在,做机器学习算法也将近八个月了。虽然还没有达到融会贯通的地步,但至少在熟悉了算法的流程后,我在算法的选择和创造能力上有了不 小的提升。实话说,机器学习很难,非常难,要做到完全了解
CoreML是iOS 11新推出的机器学习框架,是人工智能的核心内容,他可以在训练好的机器学习模型应用到APP中 所谓已训练模型 (trained model)指的是对一组训练数据应用了某个机器学习算法后,所生成的一组结果Core
人工智能是机器人的核心,是机器人的大脑。想要制造一个大脑不是一件容易的事,所以很多机器人公司都在等着,等着谷歌,等着 Facebook,等着这些能做大脑的公司,能够在某一天将他们的技术开源。 如今,这些在短时间内都实现了。
PredictionIO是一个开源的机器学习服务器,能够帮助软件开发人员创建预测功能,比如个性化,推荐和发现内容。让开发人员利用机器学习构建智能软件。几乎任何应用与PredictionIO集成都可以变得更”聪明“。它具有以下特性:
适合初学者与高手的大量机器学习资源集合
scikit-learn 是一个 Python 的机器学习项目。是一个简单高效的数据挖掘和数据分析工具。基于 NumPy、SciPy 和 matplotlib 构建。 项目主页: http://www
开发一个应用程序,使用 Python、NLTK 和机器学习对 RSS 提要进行分类 作者: Chris Joakim , 高级软件工程师, Primedia Inc 简介: 机器学习取决于 IT、数学和自然语言的
YCML 是使用 Objective-C 编写的机器学习框架,也支持 Swift。 当前提供以下算法: Gradient Descent Backpropagation [1] Resilient
从数据中看看如何做分支(branching criteria) 根据分支将数据分成几块 根据不同的数据学习子树 得到最终的决策树 所以,上面进行决策树学习的过程中需要考虑4个方面,分别是:分支的数量(number of bra